This shows you the differences between two versions of the page.
Both sides previous revision Previous revision | |||
home [2020/02/20 11:44] guest added teser |
home [2020/02/20 11:45] (current) guest fix |
||
---|---|---|---|
Line 32: | Line 32: | ||
| 12:00 | 12:15 | Welcome by Andreas Blenk and Prof. Kellerer | | | 12:00 | 12:15 | Welcome by Andreas Blenk and Prof. Kellerer | | ||
| 12:15 | 13:15 | **Session 1: Can ML finally solve congestion control problems?** \\ Session chair: Andreas Blenk (TUM) \\ \\ __Talk 1__: //Using Deep Learning in Network Measurements for Passive Congestion Control Identification//; C. Sander, J. Rüth (RWTH Aachen), O. Hohlfeld, K. Wehrle (BTU) \\ \\ __Talk 2__: //TCP Congestion Control Using Imitation Learning//; B. Jaeger, J. Schmeißer (TUM) | | | 12:15 | 13:15 | **Session 1: Can ML finally solve congestion control problems?** \\ Session chair: Andreas Blenk (TUM) \\ \\ __Talk 1__: //Using Deep Learning in Network Measurements for Passive Congestion Control Identification//; C. Sander, J. Rüth (RWTH Aachen), O. Hohlfeld, K. Wehrle (BTU) \\ \\ __Talk 2__: //TCP Congestion Control Using Imitation Learning//; B. Jaeger, J. Schmeißer (TUM) | | ||
- | | 13:15 | 13:45 | **Teaser Session for Posters and Demos** \\ \\ * NOracle: Who is communicating with whom in my network? (TUM-LKN) \\ * The Softwarised Data Zoo (UPB) \\ * Learning from Hierarchical Heavy Hitters (KIT) \\ * Artificial Intelligence and Machine Learning at LKN (TUM-LKN) \\ * FlexNets: Quantifiying Flexibility in Communication Networks (TUM-LKN) \\ * Veni Vidi Dixi: reliable wireless communication with depth images (TUM-LKN) \\ * NCSbench: Reproducible Benchmarking Platform for NCS (TUM-LKN) | + | | 13:15 | 13:45 | **Teaser Session for Posters and Demos** \\ \\ * NOracle: Who is communicating with whom in my network? (TUM-LKN) \\ * The Softwarised Data Zoo (UPB) \\ * Learning from Hierarchical Heavy Hitters (KIT) \\ * Artificial Intelligence and Machine Learning at LKN (TUM-LKN) \\ * FlexNets: Quantifiying Flexibility in Communication Networks (TUM-LKN) \\ * Veni Vidi Dixi: reliable wireless communication with depth images (TUM-LKN) \\ * NCSbench: Reproducible Benchmarking Platform for NCS (TUM-LKN) | |
- | | | + | |
| 13:45 | 14:15 | Short Break with Posters and Demos | | | 13:45 | 14:15 | Short Break with Posters and Demos | | ||
| 14:15 | 15:45 | **Session 2: ML for Network Modeling** \\ Session chair: Stefan Schneider (UPB) \\ \\ __Talk 1__: //DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning//; F. Geyer (TUM) \\ \\ __Talk 2__: //Runtime Verification of P4 Switches with Reinforcement Learning//; A. Shukla, K. N. Hudemann (TU Berlin), A. Hecker (Huawei), S. Schmid (University of Vienna) \\ \\ __Talk 3__: //Optimising the Performance of Deep Transfer Learning for Communication Networking Applications//; T. V. Phan, T. Bauschert (TU Chemnitz) | | | 14:15 | 15:45 | **Session 2: ML for Network Modeling** \\ Session chair: Stefan Schneider (UPB) \\ \\ __Talk 1__: //DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning//; F. Geyer (TUM) \\ \\ __Talk 2__: //Runtime Verification of P4 Switches with Reinforcement Learning//; A. Shukla, K. N. Hudemann (TU Berlin), A. Hecker (Huawei), S. Schmid (University of Vienna) \\ \\ __Talk 3__: //Optimising the Performance of Deep Transfer Learning for Communication Networking Applications//; T. V. Phan, T. Bauschert (TU Chemnitz) | |